Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 23
Filter
1.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.12.19.23300209

ABSTRACT

During the COVID-19 pandemic, aggregated mobility data was frequently used to estimate changing social contact rates. By taking contact matrices estimated pre-pandemic, and transforming these using pandemic-era mobility data, epidemiologists attempted to predict the number of contacts individuals were expected to have during large-scale restrictions. This study explores the most effective method for this transformation, comparing it to the accuracy of pandemic-era contact surveys. We compared four methods for scaling synthetic contact matrices: two using fitted regression models and two using "naive" mobility or mobility squared models. The regression models were fitted using CoMix contact survey and Google mobility data from the UK over March 2020 - March 2021. The four models were then used to scale synthetic contact matrices--a representation of pre-pandemic behaviour--using mobility data from the UK, Belgium and the Netherlands to predict the number of contacts expected in "work" and "other" settings for a given mobility level. We then compared partial reproduction numbers estimated from the four models with those calculated directly from CoMix contact matrices across the three countries. The accuracy of each model was assessed using root mean squared error. The fitted regression models had substantially more accurate predictions than the naive models, even when the regression models were applied to Belgium and the Netherlands. Across all countries investigated, the naive model using mobility alone was the least accurate, followed by the naive model using mobility squared. When attempting to estimate social contact rates during a pandemic without the resources available to conduct contact surveys, using a model fitted to data from another pandemic context is likely to be an improvement over using a "naive" model based on raw mobility data. If a naive model is to be used, mobility squared may be a better predictor of contact rates than mobility per se.


Subject(s)
COVID-19
2.
medrxiv; 2023.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2023.08.29.23294767

ABSTRACT

The COVID-19 pandemic led to unprecedented changes in behaviour. To estimate if these persisted a final new round of the CoMix survey was conducted in four countries at a time when all societal restrictions had been lifted for several months. We conducted a survey on a nationally representative sample in the UK, Netherlands (NL), Belgium (BE), and Switzerland (CH). Participants were asked about their contacts and behaviours on the previous day. We calculated contact matrices and compared the contact levels to a pre-pandemic baseline to estimate R0. Data collection occurred from 17 November to 7 December 2022. 7,477 participants were recruited. Some were asked to undertake the survey on behalf of their children. Only 14.4% of all participants reported wearing a facemask on the previous day, varying between 6.7% in NL to 17.8% in CH. Self-reported vaccination rates in adults were similar for each country at around 86%. Trimmed mean recorded contacts were highest in NL with 9.9 (95% confidence interval [CI] 9.0 to 10.8) contacts per person per day and lowest in CH at 6.0 (95% CI 5.4 to 6.6). The number of contacts at home were similar between the countries. Contacts at work were lowest in the UK (1.4 contacts per person per day) and highest in NL at 2.8 contacts per person per day. Other contacts were also lower in the UK at 1.6 per person per day (95% CI 1.4 to 1.9) and highest in NL at 3.4 recorded per person per day (95% CI 4.0 to 4.0). Using the next-generation approach suggests that R0 for a close-contact disease would be roughly half pre-pandemic levels in the UK, 80% in NL and intermediate in the other two countries. The pandemic appears to have resulted in lasting changes in contact patterns that would be expected to have an impact on the epidemiology of many different pathogens. Further post-pandemic surveys are necessary to confirm this finding.


Subject(s)
COVID-19
3.
biorxiv; 2023.
Preprint in English | bioRxiv | ID: ppzbmed-10.1101.2023.06.12.544667

ABSTRACT

The COVID-19 pandemic both relied and placed significant burdens on the experts involved from research and public health sectors. The sustained high pressure of a pandemic on responders, such as healthcare workers, can lead to lasting psychological impacts including acute stress disorder, post-traumatic stress disorder, burnout, and moral injury, which can impact individual wellbeing and productivity. As members of the infectious disease modelling community, we convened a reflective workshop to understand the professional and personal impacts of response work on our community and to propose recommendations for future epidemic responses. The attendees represented a range of career stages, institutions, and disciplines. This piece was collectively produced by those present at the session based on our collective experiences. Key issues we identified at the workshop were lack of institutional support, insecure contracts, unequal credit and recognition, and mental health impacts. Our recommendations include rewarding impactful work, fostering academia-public health collaboration, decreasing dependence on key individuals by developing teams, increasing transparency in decision-making, and implementing sustainable work practices. Despite limitations in representation, this workshop provided valuable insights into the UK COVID-19 modelling experience and guidance for future public health crises. Recognising and addressing the issues highlighted here is crucial, in our view, for ensuring the effectiveness of epidemic response work in the future.


Subject(s)
Chemical and Drug Induced Liver Injury , Communicable Diseases , Tooth, Impacted , COVID-19 , Stress Disorders, Traumatic , Stress Disorders, Traumatic, Acute
4.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.11.25.22282676

ABSTRACT

The SARS-CoV-2 transmission dynamics have been greatly modulated by human contact behaviour. To curb the spread of the virus, global efforts focused on implementing both Non-Pharmaceutical Interventions (NPIs) and pharmaceutical interventions such as vaccination. This study was conducted to explore the influence of COVID-19 vaccination status and risk perceptions related to SARS-CoV-2 on the number of social contacts of individuals in 16 European countries. This is important since insights derived from the study could be utilized in guiding the formulation of risk communication strategies. We used data from longitudinal surveys conducted in the 16 European countries to measure social contact behaviour in the course of the pandemic. The data consisted of representative panels of participants in terms of gender, age and region of residence in each country. The surveys were conducted in several rounds between December 2020 and September 2021. We employed a multilevel generalized linear mixed effects model to explore the influence of risk perceptions and COVID-19 vaccination status on the number of social contacts of individuals. The results indicated that perceived severity played a significant role in social contact behaviour during the pandemic after controlling for other variables. More specifically, participants who perceived COVID-19 to be a serious illness made fewer contacts compared to those who had low or neutral perceptions of the COVID-19 severity. Additionally, vaccinated individuals reported significantly higher number of contacts than the non-vaccinated. Furthermore, individual-level factors played a more substantial role in influencing contact behaviour than country-level factors. Our multi-country study yields significant insights on the importance of risk perceptions and vaccination in behavioural changes during a pandemic emergency. The apparent increase in social contact behaviour following vaccination would require urgent intervention in the event of emergence of an immune escaping variant. Hence, insights derived from this study could be taken into account when designing, implementing and communicating COVID-19 interventions.


Subject(s)
COVID-19
5.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.07.25.22277998

ABSTRACT

Most countries have enacted some restrictions to reduce social contacts to slow down disease transmission during the COVID-19 pandemic. For nearly two years, individuals likely also adopted new behaviours to avoid pathogen exposure based on personal circumstances. We aimed to understand the way in which different factors affect social contacts, a critical step to improving future pandemic responses. The analysis was based on repeated cross-sectional contact survey data collected in 21 European countries between March 2020 and March 2022. We calculated the mean daily contacts reported using a clustered bootstrap by country and by settings (at home, at work, or in other settings). Where data were available, contact rates during the study period were compared with rates recorded prior to the pandemic. We fitted censored individual-level generalized additive mixed models to examine the effects of various factors on the number of social contacts. The survey recorded 463,336 observations from 96,456 participants. In all countries where comparison data were available, contact rates over the previous two years were substantially lower than those seen prior to the pandemic (approximately from over 10 to <5), predominantly due to fewer contacts outside the home. Government restrictions imposed immediate effect on contacts, and these effects lingered after the restrictions were lifted. Across countries, the relationships between national policy, individual perceptions, or personal circumstances determining contacts varied. Our study, coordinated at the regional level, provides important insights into the understanding of the factors associated with social contacts to support future infectious disease outbreak responses.


Subject(s)
COVID-19 , Communicable Diseases
6.
researchsquare; 2022.
Preprint in English | PREPRINT-RESEARCHSQUARE | ID: ppzbmed-10.21203.rs.3.rs-1892693.v1

ABSTRACT

Background: The COVID-19 pandemic has significantly affected social contact patterns worldwide. Particularly during the first epidemic wave, because of the lack of specific treatment or vaccine, most countries around the world enforced non-pharmaceutical interventions. Italy was one of the first countries to be strongly affected by the pandemic, imposing in the first epidemic wave a hard lockdown. During the second wave, the country implemented color-coded, progressively restrictive tiers at the regional level according to weekly epidemiological risk assessments. Methods: We analyze longitudinal surveys of a representative sample of the Italian population by age, gender, and region of residence, collected during the second epidemic wave. After presenting a statistical description of the sample, we compare variations in contact patterns according to a color-coded tier of interventions experienced by the participants. In particular, we use contact matrices to quantify the reduction in the number of contacts by age group and contact settings, focusing on the adult population. We also compare the results with the pre-pandemic baseline assessing the impact of tiered restrictions on contacts. Finally, we compute the reproduction number to evaluate the impact of the restrictions on the spreading of the disease.Results: The comparison with the pre-pandemic baseline, shows a significant decrease in the number of contacts, independently from the age group or contact settings. Moreover, we show that the decrease in the number of contacts significantly depends on the strictness of the non-pharmaceutical interventions. For all levels of strictness considered, the reduction in social mixing results in a reproduction number smaller than one. In particular, the impact of the restriction on the number of contacts decreases with the severity of the interventions. Conclusions: We showed that the progressive restriction tiers implemented in Italy reduced overall the reproduction number, with stricter interventions associated with higher reductions. Readily collected contact data can promptly inform the implementation of mitigation measures at the national level in epidemic emergencies to come.


Subject(s)
COVID-19
7.
medrxiv; 2022.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2022.06.01.22275775

ABSTRACT

BackgroundEvidence and advice for pregnant women evolved during the COVID-19 pandemic. We studied social contact behaviour and vaccine uptake in pregnant women between March 2020 and September 2021 in 19 European countries. MethodsIn each country, repeated online survey data were collected from a panel of nationally-representative participants. We calculated the mean adjusted contacts reported with an individual-level generalized additive mixed model, modelled using the negative binomial distribution and a log link function. Mean proportion of people in isolation or quarantine, and vaccination coverage by pregnancy status and gender were calculated using a clustered bootstrap. FindingsWe recorded 4,129 observations from 1,041 pregnant women, and 115,359 observations from 29,860 non-pregnant individuals aged 18-49. Pregnant women made slightly fewer contacts (3.6, 95%CI=3.5-3.7) than non-pregnant women (4.0, 95%CI=3.9-4.0), driven by fewer work contacts but marginally more contacts in non-essential social settings. Approximately 15-20% pregnant and 5% of non-pregnant individuals reported to be in isolation and quarantine for large parts of the study period. COVID-19 vaccine coverage was higher in pregnant women than in non-pregnant women between January and April 2021. Since May 2021, vaccination in non-pregnant women began to increase and surpassed that in pregnant women. InterpretationSocial contacts and vaccine uptake protect pregnant women and their newborn babies. Recognition of maternal social support need, and efforts to promote the safety and effectiveness of the COVID-19 vaccines during pregnancy are high priorities in this vulnerable group.


Subject(s)
COVID-19
8.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.12.15.21267858

ABSTRACT

The Omicron B.1.1.529 SARS-CoV-2 variant was first detected in late November 2021 and has since spread to multiple countries worldwide. We model the potential consequences of the Omicron variant on SARS-CoV-2 transmission and health outcomes in England between December 2021 and April 2022, using a deterministic compartmental model fitted to epidemiological data from March 2020 onwards. Because of uncertainty around the characteristics of Omicron, we explore scenarios varying the extent of Omicron's immune escape and the effectiveness of COVID-19 booster vaccinations against Omicron, assuming the level of Omicron's transmissibility relative to Delta to match the growth in observed S gene target failure data in England. We consider strategies for the re-introduction of control measures in response to projected surges in transmission, as well as scenarios varying the uptake and speed of COVID-19 booster vaccinations and the rate of Omicron's introduction into the population. These results suggest that Omicron has the potential to cause substantial surges in cases, hospital admissions and deaths in populations with high levels of immunity, including England. The reintroduction of additional non-pharmaceutical interventions may be required to prevent hospital admissions exceeding the levels seen in England during the previous peak in winter 2020-2021.


Subject(s)
COVID-19
9.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.07.09.21260277

ABSTRACT

Background: To reduce the coronavirus disease burden in England, along with many other countries, the Government implemented a package of non-pharmaceutical interventions (NPIs) that have also impacted other transmissible infectious diseases such as norovirus. It is unclear what future norovirus disease incidence is likely to look like upon lifting these restrictions. Methods: Here we use a mathematical model of norovirus fitted to community incidence data in England to project forward expected incidence based on contact surveys that have been collected throughout 2020-2021. Results: We report that susceptibility to norovirus infection has likely increased between March 2020 to mid-2021. Depending upon assumptions of future contact patterns incidence of norovirus that is similar to pre-pandemic levels or an increase beyond what has been previously reported is likely to occur once restrictions are lifted. Should adult contact patterns return to 80% of pre-pandemic levels the incidence of norovirus will be similar to previous years. If contact patterns return to pre-pandemic levels there is a potential for the expected annual incidence to be up to 2-fold larger than in a typical year. The age-specific incidence is similar across all ages. Conclusions: Continued national surveillance for endemic diseases such as norovirus will be essential after NPIs are lifted to allow healthcare services to adequately prepare for a potential increase in cases and hospital pressures beyond what is typically experienced.


Subject(s)
COVID-19 , Disease Models, Animal , Coronavirus Infections
10.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.06.11.21258735

ABSTRACT

Background Many countries require incoming air travellers to quarantine on arrival and/or undergo testing to limit importation of SARS-CoV-2. Methods We developed mathematical models of SARS-CoV-2 viral load trajectories over the course of infection to assess the effectiveness of quarantine and testing strategies. We consider the use of Polymerase Chain Reaction (PCR) and lateral flow testing (LFT) both pre-flight, to reduce the number of infectious arrivals and when exiting quarantine, and daily testing of arrivals with LFTs. We also estimate the effect of each strategy relative to domestic incidence, and limits of achievable risk reduction, for 99 countries where flight data and case numbers are estimated. Results We find that immediately pre-flight LFTs are more effective than PCR tests 3 days before departure in decreasing the number of departing infectious travellers. Pre-flight LFTs and post-flight quarantines, with tests to release, may prevent the majority of transmission from infectious arrivals while reducing the required duration of quarantine; a pre-flight LFT followed by 5 days in quarantine with a test to release would reduce the expected number of secondary cases generated by an infected traveller compared to symptomatic self-isolation alone, Rs, by 85% (95% UI: 74%, 96%) for PCR and 85% (95% UI: 70%, 96%) for LFT, even assuming imperfect adherence to quarantine (28% of individuals) and self-isolation following a positive test (86%). Under the same adherence assumptions, 5 days of daily LFT testing would reduce Rs by 91% (95% UI: 75%, 98%). Conclusions Strategies aimed at reducing the risk of imported cases should be considered with respect to: domestic incidence, transmission, and susceptibility; measures in place to support quarantining travellers; and incidence of new variants of concern in travellers' origin countries. Daily testing with LFTs for 5 days is comparable to 5 days of quarantine with a test on exit or 14 days with no test.


Subject(s)
Severe Acute Respiratory Syndrome
11.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.28.21257973

ABSTRACT

Background: During the COVID-19 pandemic, the UK government imposed public health policies in England to reduce social contacts in hopes of curbing virus transmission. We measured contact patterns weekly from March 2020 to March 2021 to estimate the impact of these policies, covering three national lockdowns interspersed by periods of lower restrictions. Methods: Data were collected using online surveys of representative samples of the UK population by age and gender. We calculated the mean daily contacts reported using a (clustered) bootstrap and fitted a censored negative binomial model to estimate age-stratified contact matrices and estimate proportional changes to the basic reproduction number under controlled conditions using the change in contacts as a scaling factor. Results: The survey recorded 101,350 observations from 19,914 participants who reported 466,710 contacts over 53 weeks. Contact patterns changed over time and by participants' age, personal risk factors, and perception of risk. The mean of reported contacts among adults have reduced compared to previous surveys with adults aged 18 to 59 reporting a mean of 2.39 (95% CI 2.20 - 2.60) contacts to 4.93 (95% CI 4.65 - 5.19) contacts, and the mean contacts for school-age children was 3.07 (95% CI 2.89 - 3.27) to 15.11 (95% CI 13.87 - 16.41). The use of face coverings outside the home has remained high since the government mandated use in some settings in July 2020. Conclusions: The CoMix survey provides a unique longitudinal data set for a full year since the first lockdown for use in statistical analyses and mathematical modelling of COVID-19 and other diseases. Recorded contacts reduced dramatically compared to pre-pandemic levels, with changes correlated to government interventions throughout the pandemic. Despite easing of restrictions in the summer of 2020, mean reported contacts only returned to about half of that observed pre-pandemic.


Subject(s)
COVID-19
12.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.05.17.21257315

ABSTRACT

Background COVID-19 outbreaks are still occurring in English care homes despite the non-pharmaceutical interventions (NPIs) in place. Methods We developed a stochastic compartmental model to simulate the spread of SARS-CoV-2 within an English care home. We quantified the outbreak risk under the NPIs already in place, the role of community prevalence in driving outbreaks, and the relative contribution of all importation routes into the care home. We also considered the potential impact of additional control measures, namely: increasing staff and resident testing frequency, using lateral flow antigen testing (LFD) tests instead of PCR, enhancing infection prevention and control (IPC), increasing the proportion of residents isolated, shortening the delay to isolation, improving the effectiveness of isolation, restricting visitors and limiting staff to working in one care home. Findings The model suggests that importation of SARS-CoV-2 by staff, from the community, is the main driver of outbreaks, that importation by visitors or from hospitals is rare, and that the past testing strategy (monthly testing of residents and daily testing of staff by PCR) likely provides negligible benefit in preventing outbreaks. Daily staff testing by LFD was 39% (95% 18-55%) effective in preventing outbreaks at 30 days compared to no testing. Interpretation Increasing the frequency of testing in staff and enhancing IPC are important to preventing importations to the care home. Further work is needed to understand the impact of vaccination in this population, which is likely to be very effective in preventing outbreaks. Funding The National Institute for Health Research, European Union Horizon 2020, Canadian Institutes of Health Research, French National Research Agency, UK Medical Research Council. The World Health Organisation funded the development of the COS-LTCF Shiny application.


Subject(s)
COVID-19
13.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.03.06.21252964

ABSTRACT

Background Schools have been closed in England since the 4th of January 2021 as part of the national restrictions to curb transmission of SARS-CoV-2. The UK Government plans to reopen schools on the 8th of March. Although there is evidence of lower individual-level transmission risk amongst children compared to adults, the combined effects of this with increased contact rates in school settings are not clear. Methods We measured social contacts when schools were both open or closed, amongst other restrictions. We combined these data with estimates of the susceptibility and infectiousness of children compared with adults to estimate the impact of reopening schools on the reproduction number. Results Our results suggest that reopening all schools could increase R from an assumed baseline of 0.8 to between 1.0 and 1.5, or to between 0.9 and 1.2 reopening primary or secondary schools alone. Conclusion Our results suggest that reopening schools is likely to halt the fall in cases observed in recent months and risks returning to rising infections, but these estimates rely heavily on the current estimates or reproduction number and the current validity of the susceptibility and infectiousness profiles we use.

14.
medrxiv; 2021.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2021.02.01.21250959

ABSTRACT

VOC 202012/01, a SARS-CoV-2 variant first detected in the United Kingdom in September 2020, has spread to multiple countries worldwide. Several studies have established that this novel variant is more transmissible than preexisting variants of SARS-CoV-2, but have not identified whether the new variant leads to any change in disease severity. We analyse a large database of SARS-CoV-2 community test results and COVID-19 deaths for England, representing approximately 47% of all SARS-CoV-2 community tests and 7% of COVID-19 deaths in England from 1 September 2020 to 22 January 2021. Fortuitously, these SARS-CoV-2 tests can identify VOC 202012/01 because mutations in this lineage prevent PCR amplification of the spike gene target (S gene target failure, SGTF). We estimate that the hazard of death among SGTF cases is 30% (95% CI 9-56%) higher than among non-SGTF cases after adjustment for age, sex, ethnicity, deprivation level, care home residence, local authority of residence and date of test. In absolute terms, this increased hazard of death corresponds to the risk of death for a male aged 55-69 increasing from 0.56% to 0.73% (95% CI 0.60-0.86%) over the 28 days following a positive SARS-CoV-2 test in the community. Correcting for misclassification of SGTF, we estimate a 35% (12-64%) higher hazard of death associated with VOC 202012/01. Our analysis suggests that VOC 202012/01 is not only more transmissible than preexisting SARS-CoV-2 variants but may also cause more severe illness.


Subject(s)
COVID-19 , Death
15.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.12.24.20248822

ABSTRACT

A novel SARS-CoV-2 variant, VOC 202012/01 (lineage B.1.1.7), emerged in southeast England in November 2020 and is rapidly spreading towards fixation. Using a variety of statistical and dynamic modelling approaches, we estimate that this variant has a 43-90% (range of 95% credible intervals 38-130%) higher reproduction number than preexisting variants. A fitted two-strain dynamic transmission model shows that VOC 202012/01 will lead to large resurgences of COVID-19 cases. Without stringent control measures, including limited closure of educational institutions and a greatly accelerated vaccine roll-out, COVID-19 hospitalisations and deaths across England in 2021 will exceed those in 2020. Concerningly, VOC 202012/01 has spread globally and exhibits a similar transmission increase (59-74%) in Denmark, Switzerland, and the United States.


Subject(s)
COVID-19
16.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.11.11.20220962

ABSTRACT

Background: Short-term forecasts of infectious disease can create situational awareness and inform planning for outbreak response. Here, we report on multi-model forecasts of Covid-19 in the UK that were generated at regular intervals starting at the end of March 2020, in order to monitor expected healthcare utilisation and population impacts in real time. Methods: We evaluated the performance of individual model forecasts generated between 24 March and 14 July 2020, using a variety of metrics including the weighted interval score as well as metrics that assess the calibration, sharpness, bias and absolute error of forecasts separately. We further combined the predictions from individual models to ensemble forecasts using a simple mean as well as a quantile regression average that aimed to maximise performance. We further compared model performance to a null model of no change. Results: In most cases, individual models performed better than the null model, and ensembles models were well calibrated and performed comparatively to the best individual models. The quantile regression average did not noticeably outperform the mean ensemble. Conclusions: Ensembles of multi-model forecasts can inform the policy response to the Covid-19 pandemic by assessing future resource needs and expected population impact of morbidity and mortality.


Subject(s)
COVID-19 , Communicable Diseases
17.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.09.24.20200857

ABSTRACT

Background In response to the coronavirus disease 2019 (COVID-19), the UK adopted mandatory physical distancing measures in March 2020. Vaccines against the newly emerged severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) may become available as early as late 2020. We explored the health and economic value of introducing SARS-CoV-2 immunisation alongside physical distancing scenarios in the UK. Methods We used an age-structured dynamic-transmission and economic model to explore different scenarios of immunisation programmes over ten years. Assuming vaccines are effective in 5-64 year olds, we compared vaccinating 90% of individuals in this age group to no vaccination. We assumed either vaccine effectiveness of 25% and 1-year protection and 90% re-vaccinated annually, or 75% vaccine effectiveness and 10-year protection and 10% re-vaccinated annually. Natural immunity was assumed to last 45 weeks in the base case. We also explored the additional impact of physical distancing. We considered benefits from disease prevented in terms of quality-adjusted life-years (QALYs), and costs to the healthcare payer versus the national economy. We discounted at 3.5% annually and monetised health impact at 20,000 per QALY to obtain the net monetary value, which we explored in sensitivity analyses. Findings Without vaccination and physical distancing, we estimated 147.9 million COVID-19 cases (95% uncertainty interval: 48.5 million, 198.7 million) and 2.8 million (770,000, 4.2 million) deaths in the UK over ten years. Vaccination with 75% vaccine effectiveness and 10-year protection may stop community transmission entirely for several years, whereas SARS-CoV-2 becomes endemic without highly effective vaccines. Introducing vaccination compared to no vaccination leads to economic gains (positive net monetary value) of 0.37 billion to +1.33 billion across all physical distancing and vaccine effectiveness scenarios from the healthcare perspective, but net monetary values of physical distancing scenarios may be negative from societal perspective if the daily national economy losses are persistent and large. Interpretation Our model findings highlight the substantial health and economic value of introducing SARS-CoV-2 vaccination. Given uncertainty around both characteristics of the eventually licensed vaccines and long-term COVID-19 epidemiology, our study provides early insights about possible future scenarios in a post-vaccination era from an economic and epidemiological perspective.


Subject(s)
COVID-19
18.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.21.20177808

ABSTRACT

Previous work has indicated that contact tracing and isolation of index case and quarantine of potential secondary cases can, in concert with physical distancing measures, be an effective strategy for reducing transmission of SARS-CoV-2 (1). Currently, contacts traced manually through the NHS Test and Trace scheme in the UK are asked to self-isolate for 14 days from the day they were exposed to the index case, which represents the upper bound for the incubation period (2). However, following previous work on screening strategies for air travellers (3,4) it may be possible that this quarantine period could be reduced if combined with PCR testing. Adapting the simulation model for contact tracing, we find that quarantine periods of at least 10 days combined with a PCR test on day 9 may largely emulate the results from a 14-day quarantine period in terms of the averted transmission potential from secondary cases (72% (95%UI: 3%, 100%) vs 75% (4%, 100%), respectively). These results assume the delays from testing index cases and tracing their contacts are minimised (no longer than 4.5 days on average). If secondary cases are traced and quarantined 1 day earlier on average, shorter quarantine periods of 8 days with a test on day 7 (76% (7%, 100%)) approach parity with the 14 day quarantine period with a 1 day longer delay to the index cases test. However, the risk of false-negative PCR tests early in a traced cases infectious period likely prevents the use of testing to reduce quarantine periods further than this, and testing immediately upon tracing, with release if negative, will avert just 17% of transmission potential on average. In conclusion, the use of PCR testing is an effective strategy for reducing quarantine periods for secondary cases, while still reducing transmission of SARS-CoV-2, especially if delays in the test and trace system can be reduced, and may improve quarantine compliance rates.

19.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.08.21.20167965

ABSTRACT

Background School closures are a well-established non-pharmaceutical intervention in the event of infectious disease outbreaks, and have been implemented in many countries across the world, including the UK, to slow down the spread of SARS-CoV-2. As governments begin to relax restrictions on public life there is a need to understand the potential impact that reopening schools may have on transmission. Methods We used data provided by the UK Department for Education to construct a network of English schools, connected through pairs of pupils resident at the same address. We used the network to evaluate the potential for transmission between schools, and for long range propagation across the network, under different reopening scenarios. Results Amongst the options evaluated we found that reopening only Reception, Year 1 and Year 6 (4-6 and 10-11 year olds) resulted in the lowest risk of transmission between schools, with outbreaks within a single school unlikely to result in outbreaks in adjacent schools in the network. The additional reopening of Years 10 and 12 (14-15 and 16-17 year olds) resulted in an increase in the risk of transmission between schools comparable to reopening all primary school years (4-11 year olds). However, the majority of schools presented low risk of initiating widespread transmission through the school system. Reopening all secondary school years (11-18 year olds) resulted in large potential outbreak clusters putting up to 50% of households connected to schools at risk of infection if sustained transmission within schools was possible. Conclusions Reopening secondary school years is likely to have a greater impact on community transmission than reopening primary schools in England. Keeping transmission within schools limited is essential for reducing the risk of large outbreaks amongst school-aged children and their household members.

20.
medrxiv; 2020.
Preprint in English | medRxiv | ID: ppzbmed-10.1101.2020.07.24.20161281

ABSTRACT

To mitigate SARS-CoV-2 transmission risks from international travellers, many countries currently use a combination of up to 14 days of self-quarantine on arrival and testing for active infection. We used a simulation model of air travellers arriving to the UK from the EU or the USA and the timing of their stages of infection to evaluate the ability of these strategies to reduce the risk of seeding community transmission. We find that a quarantine period of 8 days on arrival with a PCR test on day 7 (with a 1-day delay for test results) can reduce the number of infectious arrivals released into the community by a median 94% compared to a no quarantine, no test scenario. This reduction is similar to that achieved by a 14-day quarantine period (median 99% reduction). Shorter quarantine periods still can prevent a substantial amount of transmission; all strategies in which travellers spend at least 5 days (the mean incubation period) in quarantine and have at least one negative test before release are highly effective (e.g. a test on day 5 with release on day 6 results in a median 88% reduction in transmission potential). Without intervention, the current high prevalence in the US (40 per 10,000) results in a higher expected number of infectious arrivals per week (up to 23) compared to the EU (up to 12), despite an estimated 8 times lower volume of travel in July 2020. Requiring a 14-day quarantine period likely results in less than 1 infectious traveller each entering the UK per week from the EU and the USA (97.5th percentile). We also find that on arrival the transmission risk is highest from pre-symptomatic travellers; quarantine policies will shift this risk increasingly towards asymptomatic infections if eventually-symptomatic individuals self-isolate after the onset of symptoms. As passenger numbers recover, strategies to reduce the risk of re-introduction should be evaluated in the context of domestic SARS-CoV-2 incidence, preparedness to manage new outbreaks, and the economic and psychological impacts of quarantine.

SELECTION OF CITATIONS
SEARCH DETAIL